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Reconstruct 3D scenes and camera poses

from 2D images

o Step 2: Reconstruct coordinates of 3D points and lines
as well as camera poses

We use calibrated perspective cameras:
each such camera is represented by a matrix
[R | t], where R € SO(3) and t € R3



5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.
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5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over, C.
(Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

= The 5-Point-Problem is a minimal problem!
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o Given: 3 images of 3 points on a line, 1 attached line and 1 free line

& Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses




Another minimal problem

o Given: 3 images of 3 points on a line, 1 attached line and 1 free line

& Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over C.
(solution = 3 camera poses and 3D coordinates of points and lines)

= It is a minimal problem!



Minimal Problems
A Point-Line-Problem (PLP) consists of
¢ a number m of cameras,
¢ a number p of points,
¢ a number / of lines,

& a set 7 of incidences between points and lines.
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Minimal Problems
A Point-Line-Problem (PLP) consists of
¢ a number m of cameras,
¢ a number p of points,
¢ a number / of lines,
& a set 7 of incidences between points and lines.
Definition
A PLP (m,p,¢,7T) is minimal if, given m generic 2D-arrangements

each consisting of p points and ¢ lines satisfying the incidences Z,
it has a positive and finite number of solutions over C.

(solution = m camera poses and 3D coordinates of p points and ¢ lines
satisfying the incidences 7 )

Can we list all minimal PLPs?
How many solutions do they have?
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Joint camera map
X X C — Y
(3D-arrangement , camg,...,camp) +—— (2D-arry,...,2D-arry,)
of p points and ¢ lines

satisfying incidences 7

¢ P" = n-dimensional projective space
¢ G1,, = {lines in P"} = Grassmannian of lines in P
o X ={(Xt,. -, XpyL1,...,Le) € (P3P x (G 3)¢ | V(i,j) €T : X; € L}
’y_{ (Xl,la---aXm,pall,la--~a/m,€) '\Vik:].,...,m }
& (P2)mp X (G172)mé V(I,j) (ki Xk,i € /k,j

Vi=1,...,m: R € SO(3),t € R3,
Ri=hti=0,t1=1

o C= {([R1|t1]7---[Rm|tm]) }

Lemma
If a PLP is minimal, then dim(X’) + dim(C) = dim(}).
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Algebraic varieties

Definition
A variety is the common zero set of a system of polynomial equations.

A variety looks like a manifold almost everywhere:

Definition
A variety is irreducible if it is not the union of two proper subvarieties.
The dimension of an irreducible variety is its local dimension as a manifold.

X, C and Y are irreducible varieties!
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Deriving the big table

A = & — N
(3D-arrangement , camji,...,camp) +—— (2D-arry,...,2D-arry)
of p points and ¢ lines

with incidences 7

Lemma
If a PLP is minimal, then dim(X’) + dim(C) = dim(}/).

Theorem

¢ If m> 6, then
dim(X) + dim(C) # dim(}).



Deriving the big table

X = G — Y
(3D-arrangement , camji,...,camp) +—— (2D-arry,...,2D-arry)
of p points and ¢ lines

with incidences 7

Lemma
If a PLP is minimal, then dim(X’) + dim(C) = dim(}/).

6 6 5> 5 5 1 1 1 1 1 1 1
021; 10133 1005; 2011, 2003; 2003; 1030, 1022, 1014, 10065 3001, 2110, 2102,

Theorem
¢ If m> 6, then
dim(X) + dim(C) # dim(Y).
& There are exactly 39 PLPs with
dim(X) + dim(C) = dim(Y):



Deriving the big table
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its joint camera map X x C — ) is dominant.
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X
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(3D-arrangement , camjy,...,camp) —>
of p points and ¢ lines
satisfying incidences 7
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its joint camera map X x C — ) is dominant.
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for every b € B thereisan a€ A  for almost every b € B there is an a € A

such that p(a) = b. such that p(a) = b.
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Deriving the big table
X ¢ =
(2D-arrq, . .., 2D-arrp,)

X
(3D-arrangement , camjy,...,camp) —>
of p points and ¢ lines
satisfying incidences 7
Lemma
A PLP with dim(X’) + dim(C) # dim()’) is minimal if and only if
its joint camera map X x C — ) is dominant.

Definition Definition

A map ¢ : A — B is surjective if A map ¢ : A— B is dominant if

for every b € B thereisan a€ A  for almost every b € B there is an a € A
such that p(a) = b. such that p(a) = b.

Fact A map ¢ : A — B between irreducible varieties A and B is dominant
if and only if
for almost every a € A the differential Do : To,A — T4 B is surjective.



Y

Deriving the big table
X ¢ =
(2D-arrq, . .., 2D-arrp,)

X
(3D-arrangement , camjy,...,camp) —>
of p points and ¢ lines
satisfying incidences 7
Lemma
A PLP with dim(X’) + dim(C) # dim()’) is minimal if and only if
its joint camera map X x C — ) is dominant.

Definition Definition

A map ¢ : A — B is surjective if A map ¢ : A— B is dominant if

for every b € B thereisan a€ A  for almost every b € B there is an a € A
such that p(a) = b. such that p(a) = b.

Fact A map ¢ : A — B between irreducible varieties A and B is dominant
if and only if
for almost every a € A the differential Do : To,A — T4 B is surjective.

Can check this computationally! It is only linear algebra!
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o For m € {2,3} : compute number of solutions with Grébner bases
(standard technique in algebraic geometry)

o For m € {4,5,6} : compute number of solutions with homotopy
continuation and monodromy
(state-of-the-art method in numerical algebraic geometry)
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Monodromy
¢ Pick random (Xp, Go) € X x C

o Set Y — ¢'(X0, Co)
e Pick Y ey
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Monodromy

# Pick random (Xp, Gp) € X x C
o Set Y — ¢'(X0, C())
e Pick YeYy

+ Along a random path from Y to Y’
track the solution (Xp, Cy) for Y
to a solution (X}, Gj) for Y’
‘via homotopy continuation

joint
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Monodromy

Pick random (Xp, Gp) € & x C

Set .Y — CD(X(), Co)

Pick Y/ e Y

Along a random path from Y to Y’
track the solution (Xp, Co) for Y

to a solution (X}, Gj) for Y’

via homotopy continuation

Along a random path from Y’ to Y
track the solution (X}, Cg) for Y’
to a solution (X1, C;) for Y

via homotopy continuation

ey
X xC

joint
camera |D



® 6 160

Monodromy

Pick random (Xp, Gp) € X x C
Set Y= ¢(X0, Co)
Pick Y/ €Y

Along a random path from Y to Y’ (Xl,Cl)

track the solution (Xp, Cy) for Y
to a solution (X}, Gj) for Y’

(Xo, Co) : TX°’ G)

via homotopy continuation X xC
Along a random path from Y’ to Y : : ol
track the solution (X3, Cf) for Y/ 1: i \ camera|d
to a solution (X1, C;) for Y 5 E '\, map

. :Y
via homotopy continuation y@ 4
Keep on circulating between Y and Y’

until no more solutions for Y are found
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Monodromy

Pick random (Xp, Gp) € & x C ; GmC))
Set V.= o), G) \:

Pick Y/ € Y |
Along a random path from Y to Y’ (X1»C1)

track the solution (Xp, Cy) for Y

to a solution (X}, Gj) for Y’ EXo, G)

(Xo, CO) :

via homotopy continuation X xC
Along a random path from Y’ to Y : : ol
track the solution (X3, Cf) for Y/ 1: i \ camera|d
to a solution (X1, C;) for Y 5 E '\, map
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Monodromy

Pick random (Xp, Gp) € & x C L (XéaCl)
Set Y = &(Xp, Go) (XZ»CZ):
Pick Y/ €Y

Along a random path from Y to Y’ (Xl,Cl)

track the solution (Xp, Cy) for Y
to a solution (X}, Gj) for Y’

(Xo, Co) : TX°’ G)

via homotopy continuation X xC
Along a random path from Y’ to Y : : ol
track the solution (X3, Cf) for Y/ 1: i \ camera|d
to a solution (X1, C;) for Y 5 E '\, map

. :Y
via homotopy continuation y@ 4
Keep on circulating between Y and Y’

until no more solutions for Y are found
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Monodromy

Pick random (Xp, Gp) € X x C ; Baac))
Set Y = &(Xo, Co) (%, CJ8
Pick Y’ € ¥ 5
Along a random path from Y to Y’ (X1,C1)X2’, G)
track the solution (Xp, Cy) for Y > -

- / /! /
to a solution (X3, Cj) for Y (%, Co)k

via homotopy continuation X xC
Along a random path from Y’ to Y : : ol
track the solution (X3, Cf) for Y/ 1: i \ camera|d
to a solution (X1, C;) for Y 5 E '\, map

. :Y
via homotopy continuation y@ 4
Keep on circulating between Y and Y’

until no more solutions for Y are found
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Thanks for your attention!



World projected

e world points: P? represented by vectors in F*
e world planes: (IP?)Y represented by vectors in F*
e camera: map PP? -> P? represented by a full rank P ¢ F3*4

corresponding map

(P?)Y - (P3)Y for 1e F3

1~ P71

e calibrated camera: P =[R|t] with R e SO(3) and t € F3




Common point (CP) constraint
det[P11V PISY PP PIIP] = 0. '

Note: more cameras and/or more lines
through the point of intersection result
in a matrix with 4 rows and more columns
that is rank deficient.




Line correspondence (LC) constraint
rank [PT10) pI1®  pI1®] <2 '




